Modeling and optimization of content-oriented and survivable optical networks

Róża Goścień, PhD

Department of Systems and Computer Networks
Wroclaw University of Science and Technology
Wroclaw, Poland
Agenda

• Motivation
• Research area
 – Network flows
 – Optical networks
 – Routing problems
 – Survivability provisioning
• Recent works
 – Modeling and optimization approaches
 – Realistic case study
• Future works
Agenda

• Motivation
• Research area
 – Network flows
 – Optical networks
 – Routing problems
 – Survivability provisioning
• Recent works
 – Modeling and optimization approaches
 – Realistic case study
• Future works
First Wide Area Network

ARPANET 1970

San Francisco
- SRI
- STANFORD
- UCSB
- SDC
- RAND

Los Angeles
- UCLA

Greater Boston
- MIT
- HARVARD
- BBN
- LINCOLN
- CARNEGIE
- CASE

Utah
Increase of the network traffic

Source:
Increase of the network traffic

Global IP traffic will increase nearly 3-fold over the next 5 years, and will have increased 127-fold from 2005 to 2021.

Source:
Increase of the network traffic: example services

Source:
Increase of the network traffic: example services

It would take an individual more than 5 million years to watch the amount of video that will cross global IP networks each month in 2021.

Source:
Increase of the network traffic: data center traffic

Source:
Agenda

• Motivation

• Research area
 – Network flows
 – Optical networks
 – Routing problems
 – Survivability provisioning

• Recent works
 – Modeling and optimization approaches
 – Realistic case study

• Future works
Unicast (one-to-one)
Anycast (one-to-one of many)
Multicast (one-to-many)
Agenda

• Motivation

• Research area
 – Network flows
 – Optical networks
 – Routing problems
 – Survivability provisioning

• Recent works
 – Modeling and optimization approaches
 – Realistic case study

• Future works
Evolution of optical networks (1)

1. Single-Line-Rate (SLR) DWDM
 - Use of a single-carrier modulation format (such as NRZ) with a single bit rate (10Gb/s) in the entire network and with the fixed DWDM frequency grid
 - low Spectral Efficiency (SE)
 - costly (several transponders for large demands)

2. Mixed-Line-Rate (MLR) DWDM
 - Introduction of different advanced modulation formats (m-PSK, m-QAM) in the same network
 + improved SE (due to the use of higher modulation levels on shorter paths)
 + 100 Gb/s connection provisioning

3.a) Elastic Optical Network (EON) with single-carrier modulation
 - Introduction of flexible frequency grids and Bandwidth Variable Wavelength Selective Switches (BV-WSS)
 + improved SE (due to the flexible spectrum allocation)
 + 100+ Gb/s connection provisioning

3.b) Elastic Optical Network (EON) with multi-carrier transmission (such as Optical OFDM)
 - Introduction of Bandwidth Variable Transponders (BV-T)
 + elastic bandwidth provisioning by allocating a number of Sub-Carriers
 + improved SE (thanks to O-OFDM)
Elastic Optical Network (EON)

Fiber contains S spectral slots (slices) in flexible grid
Space Division Multiplexing (SDM)

Fiber contains k spatial resources and S spectral slots (slices) in flexible grid
Agenda

• Motivation
• Research area
 – Network flows
 – Optical networks
 – Routing problems
 – Survivability provisioning
• Recent works
 – Modeling and optimization approaches
 – Realistic case study
• Future works
Routing and Spectrum Allocation: unicast

<table>
<thead>
<tr>
<th>DEMAND</th>
<th>ROUTE</th>
<th>SLICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNI</td>
<td>0→2</td>
<td>4</td>
</tr>
</tbody>
</table>

Slices: 1-4

Nodes:
- Node 0
- Node 1
- Node 2
- Node 3
- Node 4
Routing and Spectrum Allocation: anycast

<table>
<thead>
<tr>
<th>DEMAND</th>
<th>ROUTE</th>
<th>SLICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANY</td>
<td>1→R</td>
<td>4</td>
</tr>
</tbody>
</table>

Data center

Node 0

Node 1

Node 2

Node 3

Node 4

Slices: 1-4
Routing and Spectrum Allocation: multicast

<table>
<thead>
<tr>
<th>DEMAND</th>
<th>ROUTE</th>
<th>SLICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MULTI</td>
<td>0→1,3,4</td>
<td>4</td>
</tr>
</tbody>
</table>
Distance-Adaptive Transmission

Path length: 1000 km

Path length: 2000 km

<table>
<thead>
<tr>
<th></th>
<th>BPSK</th>
<th>QPSK</th>
<th>8QAM</th>
<th>16QAM</th>
<th>32QAM</th>
<th>64QAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum [GHz]</td>
<td>50</td>
<td>25</td>
<td>16.67</td>
<td>12.5</td>
<td>10</td>
<td>8.33</td>
</tr>
<tr>
<td>Frequency slices</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Regenerators path 1000 km</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Regenerators path 2000 km</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Cost and energy consumption

Cost of:
- Spectrum resources
- Transponders (BV-T)
- Regenerators (REG)

Energy consumption of:
- Transponders
- Regenerators
Spectrum usage

Maximum

\[z_{\text{max}} = \max_i e_i = 8 \]

Average:

\[z_{\text{av}} = \frac{1}{|E|} \sum_i e_i = 4.33 \]
Agenda

• Motivation
• Research area
 – Network flows
 – Optical networks
 – Routing problems
 – Survivability provisioning
• Recent works
 – Modeling and optimization approaches
 – Realistic case study
• Future works
Path-based survivability: protection and restoration

<table>
<thead>
<tr>
<th>DEMAND</th>
<th>ROUTE</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uni</td>
<td>0→2</td>
<td>60 GBPS</td>
</tr>
</tbody>
</table>

- Disjoint paths
- Different modulations
- Channel assignment policies
- Sharing spectrum
- Amount of data to be protected
Agenda

• Motivation
• Research area
 – Network flows
 – Optical networks
 – Routing problems
 – Survivability provisioning
• Recent works
 – Modeling and optimization approaches
 – Realistic case study
• Future works
Optimization methods

- ILP models (exact method)
- Column generation technique
- Greedy algorithms
- Metaheuristic approaches
ILP modeling

Comparison of different ILP models of the same problem:

– Channel-based (CB)
– Slice-based (SB)

CB: spectrum usage modeling

![Diagram showing spectrum usage with various bands labeled C1 to C9, each with a value of n=2, n=4, or n=6, and time slots S1 to S6.](image-url)
CB: spectrum usage modeling

\[C_1 = \{ \text{first slice index, last slice index, number of slices} \} \]

For each traffic demand \(d \) saves:

\[x_{dpc} \]

Information about selected routing structure \(p \) and frequency channel \(c \) allocated on this structure
SB: spectrum usage modeling

For each traffic demand \(d \) saves:

\[x_{dp} \] Information about selected routing structure

\[w_d \] index of the first allocated slice

\[z_d \] index of the last allocated slice
Column Generation (CG)-based methods

• Column generation is a decomposition method
• Efficient solution approach for problems with a high number of variables

Greedy and metaheuristic approaches

• Adaptive Frequency Assignment (AFA) – dedicated greedy method [9]
• Tabu Search [9], [10]
• Swarm intelligence [11], [12]

Agenda

• Motivation
• Research area
 – Network flows
 – Optical networks
 – Routing problems
 – Survivability provisioning
• Recent works
 – Modeling and optimization approaches
 – Realistic case study
• Future works
Design of content-oriented and survivable network

<table>
<thead>
<tr>
<th>DEMAND</th>
<th>ROUTE</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANY</td>
<td>1→DC</td>
<td>100 GB/s</td>
</tr>
<tr>
<td>ANY</td>
<td>3→DC</td>
<td>350 GB/s</td>
</tr>
<tr>
<td>UNI</td>
<td>2→4</td>
<td>200 GB/s</td>
</tr>
</tbody>
</table>

Joint problem

Two subproblems

DC location and routing

1. DC location
2. Routing

Benefits of anycasting in EONs

Benefits of multicasting in EONs

Comparison of protection methods in optical networks

Agenda

• Motivation
• Research area
 – Network flows
 – Optical networks
 – Routing problems
 – Survivability provisioning
• Recent works
 – Modeling and optimization approaches
 – Realistic case study
• Future works
Main research interest

- Content-oriented, DC-oriented networks
- Optical transmission
- Survivability provisioning
- Modeling and optimization approaches
- Realistic case studies
Optimization methods based on machine learning

<table>
<thead>
<tr>
<th>Demand</th>
<th>Route</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANY</td>
<td>2 → DC</td>
<td>200 GB/s</td>
</tr>
<tr>
<td>ANY</td>
<td>3 → DC</td>
<td>360 GB/s</td>
</tr>
<tr>
<td>UNI</td>
<td>4 → 0</td>
<td>150 GB/s</td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Traffic prediction
Protection against electromagnetic attacks

• Weapon of mass destruction: explosion and following electromagnetic pulse (EMP)
Protection against electromagnetic attacks

- High-power microwave (HPM)

Thank you for attention

Roza.Goscien@pwr.edu.pl