Massively Parallel Graph Algorithms

Krzysztof Nowicki

knowicki@cs.uni.wroc.pl

Institute of Computer Science, University of Wrocław

Warsaw, 07 October 2020

Research environment

Places (and people)

Research environment

Places (and people)

• University of Wrocław (with Tomasz Jurdziński)

Research environment

Places (and people)

- University of Wrocław (with Tomasz Jurdziński)
- ETH Zurich (with Mohsen Ghaffari)

Places (and people)

- University of Wrocław (with Tomasz Jurdziński)
- ETH Zurich (with Mohsen Ghaffari)
- IBM Research (with Krzysztof Onak)

Places (and people)

- University of Wrocław (with Tomasz Jurdziński)
- ETH Zurich (with Mohsen Ghaffari)
- IBM Research (with Krzysztof Onak)

Financial support

- NCN grant no 2017/25/B/ST6/02010 (Tomasz' OPUS13 grant)
- NCN grant no 2019/32/T/ST6/00566 (my ETIUDA7 grant)
- FNP START scholarship (year 2020)

Models of computation

Computational model

- industry: MapReduce, Spark, ...
- TCS community: Massively Parallel Computation (MPC) model

Computational model

- industry: MapReduce, Spark, ...
- TCS community: Massively Parallel Computation (MPC) model

Computational model

- industry: MapReduce, Spark, ...
- TCS community: Massively Parallel Computation (MPC) model

Initial take on MapReduce

input data

Computational model

- industry: MapReduce, Spark, ...
- TCS community: Massively Parallel Computation (MPC) model

Initial take on MapReduce

Computational model

- industry: MapReduce, Spark, ...
- TCS community: Massively Parallel Computation (MPC) model

Initial take on MapReduce

Computational model

- industry: MapReduce, Spark, ...
- TCS community: Massively Parallel Computation (MPC) model

Initial take on MapReduce

Computational model

- industry: MapReduce, Spark, ...
- TCS community: Massively Parallel Computation (MPC) model

Initial take on MapReduce

There are 2 kinds of problems:

Computational model

- industry: MapReduce, Spark, ...
- TCS community: Massively Parallel Computation (MPC) model

Initial take on MapReduce

There are 2 kinds of problems:

• Easy: aggregative functions, e.g. sum, min, max, ...

Computational model

- industry: MapReduce, Spark, ...
- TCS community: Massively Parallel Computation (MPC) model

Initial take on MapReduce

There are 2 kinds of problems:

- Easy: aggregative functions, e.g. sum, min, max, ...
- Non trivial: some graph problems, e.g. Minimum Spanning Tree

Computational model

- industry: MapReduce, Spark, ...
- TCS community: Massively Parallel Computation (MPC) model

MPC model

Computational model

- industry: MapReduce, Spark, ...
- TCS community: Massively Parallel Computation (MPC) model

Computing in multiple rounds

synchronous rounds

Computational model

- industry: MapReduce, Spark, ...
- TCS community: Massively Parallel Computation (MPC) model

Computing in multiple rounds

- synchronous rounds
- local computation

Computational model

- industry: MapReduce, Spark, ...
- TCS community: Massively Parallel Computation (MPC) model

Computing in multiple rounds

- synchronous rounds
- local computation
- communication

Computational model

- industry: MapReduce, Spark, ...
- TCS community: Massively Parallel Computation (MPC) model

MPC model

Parameters

• each machine gets input of size S / has communication limit S

Computational model

- industry: MapReduce, Spark, ...
- TCS community: Massively Parallel Computation (MPC) model

MPC model

Parameters

- $\cdot\,$ each machine gets input of size S / has communication limit S
- for input of size *N*, the number of machines is $\mathcal{O}(\frac{N}{5})$

 \cdot graph with *n* vertices and *m* edges

- graph with *n* vertices and *m* edges
- initially: each machine knows arbitrary set of edges of size $\mathcal{O}(\frac{m}{S})$

- graph with *n* vertices and *m* edges
- initially: each machine knows arbitrary set of edges of size $\mathcal{O}(\frac{m}{S})$
- as a result:

- graph with *n* vertices and *m* edges
- initially: each machine knows arbitrary set of edges of size $\mathcal{O}(\frac{m}{5})$
- as a result:
 - \cdot single machine knows the whole result

- graph with *n* vertices and *m* edges
- initially: each machine knows arbitrary set of edges of size $\mathcal{O}(\frac{m}{5})$
- as a result:
 - single machine knows the whole result
 - \cdot each machine knows part of the result

- graph with *n* vertices and *m* edges
- initially: each machine knows arbitrary set of edges of size $\mathcal{O}(\frac{m}{5})$
- as a result:
 - single machine knows the whole result
 - \cdot each machine knows part of the result

- graph with *n* vertices and *m* edges
- initially: each machine knows arbitrary set of edges of size $\mathcal{O}(\frac{m}{S})$
- as a result:
 - single machine knows the whole result
 - \cdot each machine knows part of the result

Three main variants

• $S \in \Omega(n^{1+\epsilon})$, for a constant $\epsilon > 0$ (superlinear memory regime),

- graph with *n* vertices and *m* edges
- initially: each machine knows arbitrary set of edges of size $\mathcal{O}(\frac{m}{S})$
- as a result:
 - single machine knows the whole result
 - \cdot each machine knows part of the result

- $S \in \Omega(n^{1+\epsilon})$, for a constant $\epsilon > 0$ (superlinear memory regime),
- $S \in \Theta(n)$ or $S \in \tilde{\Theta}(n)$ (linear memory regime),

- graph with *n* vertices and *m* edges
- initially: each machine knows arbitrary set of edges of size $\mathcal{O}(\frac{m}{5})$
- as a result:
 - single machine knows the whole result
 - \cdot each machine knows part of the result

- $S \in \Omega(n^{1+\epsilon})$, for a constant $\epsilon > 0$ (superlinear memory regime),
- $S \in \Theta(n)$ or $S \in \tilde{\Theta}(n)$ (linear memory regime),
- $S \in \mathcal{O}(n^{1-\epsilon})$, for a constant $\epsilon > 0$ (sublinear memory regime).

- graph with *n* vertices and *m* edges
- initially: each machine knows arbitrary set of edges of size $\mathcal{O}(\frac{m}{5})$
- as a result:
 - single machine knows the whole result
 - \cdot each machine knows part of the result

- $S \in \Omega(n^{1+\epsilon})$, for a constant $\epsilon > 0$ (superlinear memory regime) ,
- $S \in \Theta(n)$ or $S \in \tilde{\Theta}(n)$ (linear memory regime),
- $S \in \mathcal{O}(n^{1-\epsilon})$, for a constant $\epsilon > 0$ (sublinear memory regime).

- graph with *n* vertices and *m* edges
- initially: each machine knows arbitrary set of edges of size $\mathcal{O}(\frac{m}{S})$
- as a result:
 - single machine knows the whole result
 - \cdot each machine knows part of the result

Three main variants

- $S \in \Omega(n^{1+\epsilon})$, for a constant $\epsilon > 0$ (superlinear memory regime) ,
- $S \in \Theta(n)$ or $S \in \tilde{\Theta}(n)$ (linear memory regime),
- $S \in \mathcal{O}(n^{1-\epsilon})$, for a constant $\epsilon > 0$ (sublinear memory regime).

Remark: m = # of edges, n = # of vertices, $\delta = \min$ degree

Congested Clique Model
• multi party communication

- multi party communication
- *n* players with IDs in [*n*]

- multi party communication
- *n* players with IDs in [*n*]
- \cdot synchronous

- multi party communication
- *n* players with IDs in [*n*]
- \cdot synchronous
- all-pair communication

- \cdot multi party communication
- *n* players with IDs in [*n*]
- \cdot synchronous
- all-pair communication
- $\cdot \mathcal{O}(\log n)$ bit messages

- multi party communication
- *n* players with IDs in [*n*]
- \cdot synchronous
- all-pair communication
- $\cdot \mathcal{O}(\log n)$ bit messages

Remarks

- \cdot multi party communication
- *n* players with IDs in [*n*]
- \cdot synchronous
- \cdot all-pair communication
- $\cdot \mathcal{O}(\log n)$ bit messages

Remarks

 \cdot complexity: # of rounds

- \cdot multi party communication
- *n* players with IDs in [*n*]
- \cdot synchronous
- \cdot all-pair communication
- $\cdot \mathcal{O}(\log n)$ bit messages

Remarks

- $\cdot \Theta(n)$ different messages per player in a single round

- multi party communication
- *n* players with IDs in [*n*]
- \cdot synchronous
- all-pair communication
- $\cdot \mathcal{O}(\log n)$ bit messages

Remarks

- $\cdot \Theta(n)$ different messages per player in a single round

Graph problems in the Congested Clique

- \cdot multi party communication
- *n* players with IDs in [*n*]
- \cdot synchronous
- all-pair communication
- $\cdot \mathcal{O}(\log n)$ bit messages

Remarks

- \cdot complexity: # of rounds
- $\cdot \Theta(n)$ different messages per player in a single round

Graph problems in the Congested Clique

 \cdot each player represents single node of the input graph

- \cdot multi party communication
- *n* players with IDs in [*n*]
- \cdot synchronous
- \cdot all-pair communication
- $\cdot \mathcal{O}(\log n)$ bit messages

Remarks

- \cdot complexity: # of rounds
- $\cdot \Theta(n)$ different messages per player in a single round

Graph problems in the Congested Clique

- \cdot each player represents single node of the input graph
- input: each player knows set of incident edges

- \cdot multi party communication
- *n* players with IDs in [*n*]
- \cdot synchronous
- \cdot all-pair communication
- $\cdot \mathcal{O}(\log n)$ bit messages

Remarks

- \cdot complexity: # of rounds
- $\cdot \Theta(n)$ different messages per player in a single round

Graph problems in the Congested Clique

- \cdot each player represents single node of the input graph
- input: each player knows set of incident edges
- $\cdot\,$ result: each player knows (part of) the output

- multi party communication
- *n* players with IDs in [*n*]
- \cdot synchronous
- all-pair communication
- $\cdot \mathcal{O}(\log n)$ bit messages

Remarks

- \cdot complexity: # of rounds
- $\cdot \Theta(n)$ different messages per player in a single round

Almost equivalent to MPC with $\mathcal{O}(n)$ local memory.

Output of the community (recent FOCS / STOC / SODA)

Output of the community (recent FOCS / STOC / SODA)

*Dynamic Graph Algorithms with Batch Updates in the Massively Parallel Computation Model.(N., Onak; SODA'21)

*Walking Randomly, Massively, and Efficiently.(Łącki, Mitrović, Onak, Sankowski; STOC'20)

*Faster Algorithms for Edge Connectivity via Random 2-Out Contractions. (Ghaffari, N. Thorup, SODA'20)

*Parallel Batch-Dynamic Graphs: Constant Round Algorithms and Lower Bounds. (Durfee, Dhulipala, Kulkarni, Peng, Sawlani, Sun, SODA'20) *Exponentially Faster Massively Parallel Maximal Matching. (Behnezhad,

Hajiaghayi, Harris; FOCS'19)

*Conditional Hardness Results for Massively Parallel Computation from Distributed Lower Bounds. (Ghaffari, Kuhn, Uitto; FOCS'19)

*Near-Optimal Massively Parallel Graph Connectivity. (Behnezhad,

Dhulipala, Esfandiari, Łącki, Mirrokni; FOCS'19)

*Massively parallel approximation algorithms for edit distance and longest common subsequence(Hajiaghayi , Seddighin, Sun, SODA'19)

*Sparsifying Distributed Algorithms with Ramifications in Massively Parallel Computation and Centralized Local Computation.(Ghaffari, Uitto; SODA'19)

Output of the community (not so recent FOCS / STOC / SODA)

*Parallel Graph Connectivity in Log Diameter Rounds.(Andoni, Song, Stein, Wang, Zhong; FOCS'18)

- *Round compression for parallel matching algorithms.(Czumaj, Łącki, Mądry, Mitrović, Onak, Sankowski; STOC'18)
- *MST in O(1) Rounds of Congested Clique.(Jurdzinski, N.; SODA'18)
- *Efficient massively parallel methods for dynamic programming.(Im,

Moseley, Sun; STOC'17)

- ***A New Framework for Distributed Submodular Maximization.**(Barbosa, Ene, Nguyên, Ward; FOCS'16)
- *Randomized Composable Core-sets for Distributed Submodular Maximization. (Mirrokni, Zadimoghaddam; STOC'15)
- *Parallel Algorithms for Geometric Graph Problems.(Andoni, Nikolov, Onak, Yaroslavtsev, STOC'14)
- ***A Model of Computation for MapReduce.** (Karloff, Suri, Vassilvitskii, SODA'10)

Output of the community (not so recent FOCS / STOC / SODA)

*Parallel Graph Connectivity in Log Diameter Rounds.(Andoni, Song, Stein, Wang, Zhong; FOCS'18)

- *Round compression for parallel matching algorithms.(Czumaj, Łącki, Mądry, Mitrović, Onak, Sankowski; STOC'18)
- *MST in O(1) Rounds of Congested Clique.(Jurdzinski, N.; SODA'18)
- *Efficient massively parallel methods for dynamic programming.(Im,

Moseley, Sun; STOC'17)

- ***A New Framework for Distributed Submodular Maximization.**(Barbosa, Ene, Nguyên, Ward; FOCS'16)
- *Randomized Composable Core-sets for Distributed Submodular Maximization. (Mirrokni, Zadimoghaddam; STOC'15)
- *Parallel Algorithms for Geometric Graph Problems.(Andoni, Nikolov, Onak, Yaroslavtsev, STOC'14)
- ***A Model of Computation for MapReduce.** (Karloff, Suri, Vassilvitskii, SODA'10)

Including other papers makes the list significantly longer.

My research

1. Minimum Spanning Tree problem

Minimum Spanning Tree problem
Minimum Cut problem

- 1. Minimum Spanning Tree problem
- 2. Minimum Cut problem
- 3. Dynamic Graph algorithms

My research

Minimum Spanning Tree problem

year	round	det.?	authors; source
	complexity		

MST -- a problem with a long history of results

year	round	det.?	authors; source
	complexity		
1926	$\mathcal{O}(\log n)$	yes	Boruvka; Práce Mor. Přírodověd. Spol. V Brně

MST -- a problem with a long history of results

year	round	det.?	authors; source
	complexity		
1926	$\mathcal{O}(\log n)$	yes	Boruvka;
			Práce Mor. Přírodověd. Spol. V Brně
2003	()(loglogn)	MOG	Lotker, Patt-Shamir, Pavlov, Peleg;
	O(10g10g11)	yes	SPAA'03

year	round	det.?	authors; source
	complexity		
1926	$\mathcal{O}(\log n)$	yes	Boruvka;
			Práce Mor. Přírodověd. Spol. V Brně
2003	$\mathcal{O}(\log \log n)$	yes	Lotker, Patt-Shamir, Pavlov, Peleg;
			SPAA'03
2015	$O(\log \log \log n)$	no	Hegeman, Pandurangan, Pemmaraju
		110	Sardeshmukh, Scquizzato; PODC'16

year	round	det.?	authors; source
	complexity		
1926	$\mathcal{O}(\log n)$	yes	Boruvka;
			Práce Mor. Přírodověd. Spol. V Brně
2003	$\mathcal{O}(\log \log n)$	yes	Lotker, Patt-Shamir, Pavlov, Peleg;
			SPAA'03
2015	$\mathcal{O}(\log \log \log n)$	no	Hegeman, Pandurangan, Pemmaraju,
			Sardeshmukh, Scquizzato; PODC'16
2016	$\mathcal{O}(\log^* n)$	no	Ghaffari, Parter; PODC'17

year	round	det.?	authors; source
	complexity		
1926	$\mathcal{O}(\log n)$	yes	Boruvka; Práce Mor. Přírodověd. Spol. V Brně
2003	$\mathcal{O}(\log \log n)$	yes	Lotker, Patt-Shamir, Pavlov, Peleg; SPAA'03
2015	$\mathcal{O}(\log \log \log n)$	no	Hegeman, Pandurangan, Pemmaraju, Sardeshmukh, Scquizzato; PODC'16
2016	$\mathcal{O}(\log^* n)$	no	Ghaffari, Parter; PODC'17
2018	<i>O</i> (1)	no	Jurdziński, N.; SODA'18

year	round	det.?	authors; source
	complexity		
1926	$\mathcal{O}(\log n)$	yes	Boruvka;
			Práce Mor. Přírodověd. Spol. V Brně
2003	$\mathcal{O}(\log \log n)$	yes	Lotker, Patt-Shamir, Pavlov, Peleg;
2003			SPAA'03
2015	$\mathcal{O}(\log \log \log n)$	no	Hegeman, Pandurangan, Pemmaraju,
			Sardeshmukh, Scquizzato; PODC'16
2016	$\mathcal{O}(\log^* n)$	no	Ghaffari, Parter; PODC'17
	,		
2018	$\mathcal{O}(1)$	no	Jurdziński, N.; SODA'18
2019	<i>O</i> (1)	yes	N.; arxiv preprint

Instance of MST problem \rightarrow several instances of Connected Components problem.

Instance of MST problem \rightarrow several instances of Connected Components problem.

Spanning Forest algorithm

- 1. Select $\mathcal{O}(n)$ edges (in a certain way).
- 2. Compute connected components on selected edges.
- 3. Partition the component graph into edge disjoint subgraphs, constructed in a certain way.
- 4. Sparsify all subgraphs, in parallel.

Instance of MST problem \rightarrow several instances of Connected Components problem.

Spanning Forest algorithm

- 1. Select $\mathcal{O}(n)$ edges (in a certain way).
- 2. Compute connected components on selected edges.
- 3. Partition the component graph into edge disjoint subgraphs, constructed in a certain way.
- 4. Sparsify all subgraphs, in parallel.

Sparsify = reduce the number of edges, while preserving connected components.

Instance of MST problem \rightarrow several instances of Connected Components problem.

Spanning Forest algorithm

- 1. Select $\mathcal{O}(n)$ edges (in a certain way).
- 2. Compute connected components on selected edges.
- 3. Partition the component graph into edge disjoint subgraphs, constructed in a certain way.
- 4. Sparsify all subgraphs, in parallel.

Sparsify = reduce the number of edges, while preserving connected components.

A sketch of the spanning forest algorithm

Edge selection

A sketch of the spanning forest algorithm

Edge selection

1. For each vertex mark an edge connecting it to the neighbour with max degree.

Edge selection

1. For each vertex mark an edge connecting it to the neighbour with max degree.

 $(deg(u), id(u)) > (deg(v), id(v)) \qquad (deg(u'), id(u')) > (deg(v), id(v))$

Edge selection

1. For each vertex mark an edge connecting it to the neighbour with max degree.

2. For each vertex mark an unmarked incident edge (if exists).

 $(deg(u), id(u)) > (deg(v), id(v)) \qquad (deg(u'), id(u')) > (deg(v), id(v))$

Edge selection

1. For each vertex mark an edge connecting it to the neighbour with max degree.

2. For each vertex mark an unmarked incident edge (if exists).

 $(deg(u), id(u)) > (deg(v), id(v)) \qquad (deg(u'), id(u')) > (deg(v), id(v))$

 \Rightarrow v in component of size at least deg(v) + 1.,

Spanning Forest algorithm

- 1. Select $\mathcal{O}(n)$ edges (in a certain way).
- 2. Compute connected components on selected edges.
- 3. Partition the component graph into edge disjoint subgraphs, *constructed in a certain way*.
- 4. Sparsify all subgraphs, in parallel.

Partition and sparsification

Partition and sparsification

Sparsification:

Sparsification:

A sparsification algorithm that reduces the number of edges to \sqrt{mn} , while preserving the edges of the minimum spanning forest.

Sparsification:

A sparsification algorithm that reduces the number of edges to \sqrt{mn} , while preserving the edges of the minimum spanning forest. Korhonen's algorithm [B.A. at DISC 2016] adjusted to sparse graphs.

Sparsification:

A sparsification algorithm that reduces the number of edges to \sqrt{mn} , while preserving the edges of the minimum spanning forest. Korhonen's algorithm [B.A. at DISC 2016] adjusted to sparse graphs.

Partition:

Sparsification:

A sparsification algorithm that reduces the number of edges to \sqrt{mn} , while preserving the edges of the minimum spanning forest. Korhonen's algorithm [B.A. at DISC 2016] adjusted to sparse graphs.

Partition:

 $\mathcal{O}(\log n)$ edge disjoint subgraphs of the component graph

Sparsification:

A sparsification algorithm that reduces the number of edges to \sqrt{mn} , while preserving the edges of the minimum spanning forest. Korhonen's algorithm [B.A. at DISC 2016] adjusted to sparse graphs.

Partition:

 $\mathcal{O}(\log n)$ edge disjoint subgraphs of the component graph

 $(V_1, E_1), (V_2, E_2), \dots (V_{\mathcal{O}(\log n)}, E_{\mathcal{O}(\log n)})$

Sparsification:

A sparsification algorithm that reduces the number of edges to \sqrt{mn} , while preserving the edges of the minimum spanning forest. Korhonen's algorithm [B.A. at DISC 2016] adjusted to sparse graphs.

Partition:

 $\mathcal{O}(\log n)$ edge disjoint subgraphs of the component graph

$$(V_1, E_1), (V_2, E_2), \dots (V_{\mathcal{O}(\log n)}, E_{\mathcal{O}(\log n)})$$

s.t. $\sum_i \sqrt{|V_i| \cdot |E_i|} = \mathcal{O}(n).$

My research

Minimum Cut problem

2-out contraction - algorithm for simple graphs

2-out contraction - algorithm for simple graphs

1. For each vertex mark 2 random incident edges.

2-out contraction - algorithm for simple graphs

1. For each vertex mark 2 random incident edges.

2-out contraction - algorithm for simple graphs

- 1. For each vertex mark 2 random incident edges.
- 2. Contract connected components spanned by marked edges.

2-out contraction - properties (for simple graphs)

2-out contraction - properties (for simple graphs)

1. Number of vertices after contraction is $\mathcal{O}(n/\delta)$.

2-out contraction - properties (for simple graphs)

- 1. Number of vertices after contraction is $\mathcal{O}(n/\delta)$.
- 2. A fixed non-singleton min-cut is preserved with a constant probability.

2-out contraction - properties (for simple graphs)

- 1. Number of vertices after contraction is $\mathcal{O}(n/\delta)$.
- 2. A fixed non-singleton min-cut is preserved with a constant probability.

1. Reduce the number of edges (to $\mathcal{O}(n)$).

- 1. Reduce the number of edges (to $\mathcal{O}(n)$).
- 2. Modify alg. to preserve all small cuts with high probability.

- 1. Reduce the number of edges (to $\mathcal{O}(n)$).
- 2. Modify alg. to preserve all small cuts with high probability.
- 3. Compute min-cut on smaller graph with different algorithm (for multigraphs).

- 1. Reduce the number of edges (to $\mathcal{O}(n)$).
- 2. Modify alg. to preserve all small cuts with high probability.
- 3. Compute min-cut on smaller graph with different algorithm (for multigraphs).

- 1. Reduce the number of edges (to $\mathcal{O}(n)$).
- 2. Modify alg. to preserve all small cuts with high probability.
- 3. Compute min-cut on smaller graph with different algorithm (for multigraphs).

Improved Algorithms:

1. Congested Clique / MPC: $\mathcal{O}(1)$ round algorithm.

- 1. Reduce the number of edges (to $\mathcal{O}(n)$).
- 2. Modify alg. to preserve all small cuts with high probability.
- 3. Compute min-cut on smaller graph with different algorithm (for multigraphs).

- 1. Congested Clique / MPC: $\mathcal{O}(1)$ round algorithm.
- 2. Sequential: min $(\mathcal{O}(m \log n), \mathcal{O}(m + n \log^2 n))$.

- 1. Reduce the number of edges (to $\mathcal{O}(n)$).
- 2. Modify alg. to preserve all small cuts with high probability.
- 3. Compute min-cut on smaller graph with different algorithm (for multigraphs).

- 1. Congested Clique / MPC: $\mathcal{O}(1)$ round algorithm.
- 2. Sequential: min $(\mathcal{O}(m \log n), \mathcal{O}(m + n \log^2 n))$. impr. over Henzinger, Rao, Wang; SODA'17

- 1. Reduce the number of edges (to $\mathcal{O}(n)$).
- 2. Modify alg. to preserve all small cuts with high probability.
- 3. Compute min-cut on smaller graph with different algorithm (for multigraphs).

- 1. Congested Clique / MPC: $\mathcal{O}(1)$ round algorithm.
- 2. Sequential: min $(\mathcal{O}(m \log n), \mathcal{O}(m + n \log^2 n))$. impr. over Henzinger, Rao, Wang; SODA'17
- 3. Distributed (Congest): $\tilde{O}(n^{0.8}D^{0.2} + n^{0.9})$.

- 1. Reduce the number of edges (to $\mathcal{O}(n)$).
- 2. Modify alg. to preserve all small cuts with high probability.
- 3. Compute min-cut on smaller graph with different algorithm (for multigraphs).

- 1. Congested Clique / MPC: $\mathcal{O}(1)$ round algorithm.
- 2. Sequential: min $(\mathcal{O}(m \log n), \mathcal{O}(m + n \log^2 n))$. impr. over Henzinger, Rao, Wang; SODA'17
- 3. Distributed (Congest): $\tilde{O}(n^{0.8}D^{0.2} + n^{0.9})$. impr. over Daga, Henzinger, Nanongkai, Saranurak; STOC'19

MPC algorithms for weighted graphs (Ghaffari, N.; PODC'20)

Linear local memory

Adaptation of algorithm based on tree packings (Karger, STOC'96).

Linear local memory

Adaptation of algorithm based on tree packings (Karger, STOC'96).

Sublinear local memory

 $(2 + \varepsilon)$ -approximation in $\mathcal{O}(\log n \log \log n)$ rounds, modification of contraction based algorithm for PRAM (Karger, SODA'94).

My research

Dynamic Graph algorithms

Motivation

In practice:
In practice:

solving problem repeatedly

In practice:

- solving problem repeatedly
- \cdot slightly changing data set

In practice:

- \cdot solving problem repeatedly
- \cdot slightly changing data set

More formally

In practice:

- solving problem repeatedly
- slightly changing data set

More formally

• G_1, G_2, \ldots, G_i is G_{i-1} with up to k modifications.

In practice:

- solving problem repeatedly
- slightly changing data set

More formally

- G_1, G_2, \ldots, G_i is G_{i-1} with up to k modifications.
- Goal: compute S_1, S_2, \ldots , a sequence of solutions.

There is no proven separation between linear memory MPC and sublinear memory MPC. However, we know substantially better algorithms for $\mathcal{O}(n)$ memory regime.

	$S \in \mathcal{O}(n)$	$S \in \mathcal{O}(n^{1-\varepsilon})$
MST	<i>O</i> (1)	$\mathcal{O}(\log n)$
2-EC	<i>O</i> (1)	$\mathcal{O}(\log n)$
MIS	$\mathcal{O}(\log \log n)$	$\tilde{\mathcal{O}}(\sqrt{\log n})$
MM	$\mathcal{O}(\log \log n)$	$\tilde{\mathcal{O}}(\sqrt{\log n})$

There is no proven separation between linear memory MPC and sublinear memory MPC. However, we know substantially better algorithms for $\mathcal{O}(n)$ memory regime.

	$S \in \mathcal{O}(n)$	$S \in \mathcal{O}(n^{1-\varepsilon})$
MST	<i>O</i> (1)	$\mathcal{O}(\log n)$
2-EC	<i>O</i> (1)	$\mathcal{O}(\log n)$
MIS	$\mathcal{O}(\log \log n)$	$\tilde{\mathcal{O}}(\sqrt{\log n})$
MM	$\mathcal{O}(\log \log n)$	$\tilde{\mathcal{O}}(\sqrt{\log n})$

2-cycle Conjecture

Any algorithm that distinguish between single-cycle input and two-cycle input, with $\mathcal{O}(n^{1-\varepsilon})$ local memory, and $\operatorname{poly}(n)$ global memory requires $\Omega(\log n)$ rounds.

In practice:

- solving problem repeatedly
- slightly changing data set

More formally

- G_1, G_2, \ldots, G_i is G_{i-1} with up to k modifications.
- Goal: compute S_1, S_2, \ldots , a sequence of solutions.

Batch dynamic updates in MPC:

In practice:

- solving problem repeatedly
- slightly changing data set

More formally

- G_1, G_2, \ldots, G_i is G_{i-1} with up to k modifications.
- Goal: compute S_1, S_2, \ldots , a sequence of solutions.

Batch dynamic updates in MPC:

• **Goal':** for batch-update on graph G_i compute update on S_i that transforms it into S_{i+1}

Input: Sequence of batch-updates, each adds / removes *k* edges.

Input: Sequence of batch-updates, each adds / removes *k* edges.

Input: Sequence of batch-updates, each adds / removes *k* edges.

Input: Sequence of batch-updates, each adds / removes *k* edges.

Input: Sequence of batch-updates, each adds / removes *k* edges.

Input: Sequence of batch-updates, each adds / removes *k* edges.

In practice:

- solving problem repeatedly
- slightly changing data set

More formally

- G_1, G_2, \ldots, G_i is G_{i-1} with up to k modifications.
- Goal: compute S_1, S_2, \ldots , a sequence of solutions.

Batch dynamic updates in MPC:

- **Goal':** for batch-update on graph G_i compute update on S_i that transforms it into S_{i+1}
- Meta-goal: minimize round complexity of update and local memory *S*,

In practice:

- solving problem repeatedly
- slightly changing data set

More formally

- G_1, G_2, \ldots, G_i is G_{i-1} with up to k modifications.
- Goal: compute S_1, S_2, \ldots , a sequence of solutions.

Batch dynamic updates in MPC:

- **Goal':** for batch-update on graph G_i compute update on S_i that transforms it into S_{i+1}
- Meta-goal: minimize round complexity of update and local memory S, while maximizing batch size k.

Our results (for $k \in \mathcal{O}(S)$)

Problem	upd. compl.	ini. compl.
Minimum Spanning Tree	<i>O</i> (1)	$\mathcal{O}(\log n)$
2-Edge Connected Components	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$
Maximal Matching	$\mathcal{O}(\log \log n)$	$\tilde{\mathcal{O}}(\sqrt{\log n})$

Our results (for $k \in \mathcal{O}(S)$)

Problem	upd. compl.	ini. compl.
Minimum Spanning Tree	<i>O</i> (1)	$\mathcal{O}(\log n)$
2-Edge Connected Components	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$
Maximal Matching	$\mathcal{O}(\log \log n)$	$\tilde{\mathcal{O}}(\sqrt{\log n})$

Our building blocks

- 1. Top tree implementation (for 1 and 2).
- 2. Additional observations (for 1 and 3).

Our results (for $k \in \mathcal{O}(S)$)

Problem	upd. compl.	ini. compl.
Minimum Spanning Tree	<i>O</i> (1)	$\mathcal{O}(\log n)$
2-Edge Connected Components	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$
Maximal Matching	$\mathcal{O}(\log \log n)$	$\tilde{\mathcal{O}}(\sqrt{\log n})$

Our building blocks

- 1. Top tree implementation (for 1 and 2).
- 2. Additional observations (for 1 and 3).

MST: reduce the problem to static version, with $\mathcal{O}(k)$ vertices

Our results (for $k \in \mathcal{O}(S)$)

Problem	upd. compl.	ini. compl.
Minimum Spanning Tree	<i>O</i> (1)	$\mathcal{O}(\log n)$
2-Edge Connected Components	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$
Maximal Matching	$\mathcal{O}(\log \log n)$	$\tilde{\mathcal{O}}(\sqrt{\log n})$

Our building blocks

- 1. Top tree implementation (for 1 and 2).
- 2. Additional observations (for 1 and 3).

MST: reduce the problem to static version, with O(k) vertices MM: static version of the problem with vertex cover of size O(k)

Our results (for $k \in \mathcal{O}(S)$)

Problem	upd. compl.	ini. compl.
Minimum Spanning Tree	<i>O</i> (1)	$\mathcal{O}(\log n)$
2-Edge Connected Components	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$
Maximal Matching	$\mathcal{O}(\log \log n)$	$\tilde{\mathcal{O}}(\sqrt{\log n})$

Our building blocks

- 1. Top tree implementation (for 1 and 2).
- 2. Additional observations (for 1 and 3).

MST: reduce the problem to static version, with O(k) vertices MM: static version of the problem with vertex cover of size O(k)

Better-than-static algorithms for $k \in \Theta(S^{1+\varepsilon'})$?

Our results (for $k \in \mathcal{O}(S)$)

Problem	upd. compl.	ini. compl.
Minimum Spanning Tree	<i>O</i> (1)	$\mathcal{O}(\log n)$
2-Edge Connected Components	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$
Maximal Matching	$\mathcal{O}(\log \log n)$	$\tilde{\mathcal{O}}(\sqrt{\log n})$

Our building blocks

- 1. Top tree implementation (for 1 and 2).
- 2. Additional observations (for 1 and 3).

MST: reduce the problem to static version, with O(k) vertices MM: static version of the problem with vertex cover of size O(k)

Better-than-static algorithms for $k \in \Theta(S^{1+\varepsilon'})$? Unlikely.

Thanks!

Thanks!

For the details:

- email me: knowicki@cs.uni.wroc.pl
- ask me in person