
Massively Parallel Graph Algorithms
.

Krzysztof Nowicki
knowicki@cs.uni.wroc.pl

Institute of Computer Science, University of Wrocław

Warsaw, 07 October 2020



Research environment

Places (and people)

• University of Wrocław (with Tomasz Jurdziński)
• ETH Zurich (with Mohsen Ghaffari)
• IBM Research (with Krzysztof Onak)

Financial support

• NCN grant no 2017/25/B/ST6/02010 (Tomasz' OPUS13 grant)
• NCN grant no 2019/32/T/ST6/00566 (my ETIUDA7 grant)
• FNP START scholarship (year 2020)

1



Research environment

Places (and people)

• University of Wrocław (with Tomasz Jurdziński)

• ETH Zurich (with Mohsen Ghaffari)
• IBM Research (with Krzysztof Onak)

Financial support

• NCN grant no 2017/25/B/ST6/02010 (Tomasz' OPUS13 grant)
• NCN grant no 2019/32/T/ST6/00566 (my ETIUDA7 grant)
• FNP START scholarship (year 2020)

1



Research environment

Places (and people)

• University of Wrocław (with Tomasz Jurdziński)
• ETH Zurich (with Mohsen Ghaffari)

• IBM Research (with Krzysztof Onak)

Financial support

• NCN grant no 2017/25/B/ST6/02010 (Tomasz' OPUS13 grant)
• NCN grant no 2019/32/T/ST6/00566 (my ETIUDA7 grant)
• FNP START scholarship (year 2020)

1



Research environment

Places (and people)

• University of Wrocław (with Tomasz Jurdziński)
• ETH Zurich (with Mohsen Ghaffari)
• IBM Research (with Krzysztof Onak)

Financial support

• NCN grant no 2017/25/B/ST6/02010 (Tomasz' OPUS13 grant)
• NCN grant no 2019/32/T/ST6/00566 (my ETIUDA7 grant)
• FNP START scholarship (year 2020)

1



Research environment

Places (and people)

• University of Wrocław (with Tomasz Jurdziński)
• ETH Zurich (with Mohsen Ghaffari)
• IBM Research (with Krzysztof Onak)

Financial support

• NCN grant no 2017/25/B/ST6/02010 (Tomasz' OPUS13 grant)
• NCN grant no 2019/32/T/ST6/00566 (my ETIUDA7 grant)
• FNP START scholarship (year 2020)

1



Models of computation
.



Modern Approach to Parallel Computing

Computational model

• industry: MapReduce, Spark, …
• TCS community: Massively Parallel Computation (MPC) model

2



Modern Approach to Parallel Computing

Computational model

• industry: MapReduce, Spark, …
• TCS community: Massively Parallel Computation (MPC) model

2



Modern Approach to Parallel Computing

Computational model

• industry: MapReduce, Spark, …
• TCS community: Massively Parallel Computation (MPC) model

2



Modern Approach to Parallel Computing

Computational model

• industry: MapReduce, Spark, …
• TCS community: Massively Parallel Computation (MPC) model

Initial take on MapReduce

2



Modern Approach to Parallel Computing

Computational model

• industry: MapReduce, Spark, …
• TCS community: Massively Parallel Computation (MPC) model

Initial take on MapReduce

2



Modern Approach to Parallel Computing

Computational model

• industry: MapReduce, Spark, …
• TCS community: Massively Parallel Computation (MPC) model

Initial take on MapReduce

2



Modern Approach to Parallel Computing

Computational model

• industry: MapReduce, Spark, …
• TCS community: Massively Parallel Computation (MPC) model

Initial take on MapReduce

2



Modern Approach to Parallel Computing

Computational model

• industry: MapReduce, Spark, …
• TCS community: Massively Parallel Computation (MPC) model

Initial take on MapReduce

There are 2 kinds of problems:

• Easy: aggregative functions, e.g. sum, min, max, …
• Non trivial: some graph problems, e.g. Minimum Spanning Tree

2



Modern Approach to Parallel Computing

Computational model

• industry: MapReduce, Spark, …
• TCS community: Massively Parallel Computation (MPC) model

Initial take on MapReduce

There are 2 kinds of problems:

• Easy: aggregative functions, e.g. sum, min, max, …

• Non trivial: some graph problems, e.g. Minimum Spanning Tree

2



Modern Approach to Parallel Computing

Computational model

• industry: MapReduce, Spark, …
• TCS community: Massively Parallel Computation (MPC) model

Initial take on MapReduce

There are 2 kinds of problems:

• Easy: aggregative functions, e.g. sum, min, max, …
• Non trivial: some graph problems, e.g. Minimum Spanning Tree

2



Modern Approach to Parallel Computing

Computational model

• industry: MapReduce, Spark, …
• TCS community: Massively Parallel Computation (MPC) model

MPC model

2



Modern Approach to Parallel Computing

Computational model

• industry: MapReduce, Spark, …
• TCS community: Massively Parallel Computation (MPC) model

MPC model

Computing in multiple rounds

• synchronous rounds

• local computation
• communication

2



Modern Approach to Parallel Computing

Computational model

• industry: MapReduce, Spark, …
• TCS community: Massively Parallel Computation (MPC) model

MPC model

Computing in multiple rounds

• synchronous rounds
• local computation

• communication

2



Modern Approach to Parallel Computing

Computational model

• industry: MapReduce, Spark, …
• TCS community: Massively Parallel Computation (MPC) model

MPC model

Computing in multiple rounds

• synchronous rounds
• local computation
• communication 2



Modern Approach to Parallel Computing

Computational model

• industry: MapReduce, Spark, …
• TCS community: Massively Parallel Computation (MPC) model

MPC model

Parameters

• each machine gets input of size S / has communication limit S

• for input of size N, the number of machines is O(NS )

2



Modern Approach to Parallel Computing

Computational model

• industry: MapReduce, Spark, …
• TCS community: Massively Parallel Computation (MPC) model

MPC model

Parameters

• each machine gets input of size S / has communication limit S
• for input of size N, the number of machines is O(NS )

2



Graph problems in the MPC model

Input / Output

• graph with n vertices and m edges
• initially: each machine knows arbitrary set of edges of size O(mS )

• as a result:

• single machine knows the whole result
• each machine knows part of the result

Three main variants
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Congested Clique Model

• multi party communication
• n players with IDs in [n]
• synchronous
• all-pair communication
• O(logn) bit messages

Remarks

• complexity: # of rounds
• Θ(n) different messages per player in a single round
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Congested Clique Model

• multi party communication
• n players with IDs in [n]
• synchronous
• all-pair communication
• O(logn) bit messages

Remarks

• complexity: # of rounds
• Θ(n) different messages per player in a single round
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Almost equivalent to MPC with O(n) local memory.
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Wang, Zhong; FOCS'18)
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Including other papers makes the list significantly longer.

6



Output of the community (not so recent FOCS / STOC / SODA)

*Parallel Graph Connectivity in Log Diameter Rounds.(Andoni, Song, Stein,
Wang, Zhong; FOCS'18)
*Round compression for parallel matching algorithms.(Czumaj, Łącki,
Mądry, Mitrović, Onak, Sankowski; STOC'18)
*MST in O(1) Rounds of Congested Clique.(Jurdzinski, N.; SODA'18)
*Efficient massively parallel methods for dynamic programming.(Im,
Moseley, Sun; STOC'17)
*A New Framework for Distributed Submodular Maximization.(Barbosa, Ene,
Nguyên, Ward; FOCS'16)
*Randomized Composable Core-sets for Distributed Submodular
Maximization. (Mirrokni, Zadimoghaddam; STOC'15)
*Parallel Algorithms for Geometric Graph Problems.(Andoni, Nikolov, Onak,
Yaroslavtsev, STOC'14)
*A Model of Computation for MapReduce. (Karloff, Suri, Vassilvitskii,
SODA'10)

Including other papers makes the list significantly longer.
6



My research
.



Three main topics.

1. Minimum Spanning Tree problem
2. Minimum Cut problem
3. Dynamic Graph algorithms
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My research
.
Minimum Spanning Tree problem



MST -- a problem with a long history of results

year round
complexity

det.? authors; source

1926 O(logn) yes Boruvka;
Práce Mor. Přírodověd. Spol. V Brně

2003 O(log logn) yes Lotker, Patt-Shamir, Pavlov, Peleg;
SPAA'03

2015 O(log log logn) no Hegeman, Pandurangan, Pemmaraju,
Sardeshmukh, Scquizzato; PODC'16

2016 O(log∗ n) no Ghaffari, Parter; PODC'17

2018 O(1) no Jurdziński, N.; SODA'18

2019 O(1) yes N.; arxiv preprint
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A sketch of a spanning forest algorithm

Hegeman et al. (PODC'15)
Instance of MST problem → several instances of Connected
Components problem.

Spanning Forest algorithm
1. Select O(n) edges (in a certain way).
2. Compute connected components on selected edges.
3. Partition the component graph into edge disjoint subgraphs,
constructed in a certain way.
4. Sparsify all subgraphs, in parallel.

Sparsify = reduce the number of edges, while preserving connected
components.
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A sketch of the spanning forest algorithm

Edge selection

1. For each vertex mark an edge connecting it to the neighbour with
max degree.
2. For each vertex mark an unmarked incident edge (if exists).

v

(deg(u), id(u)) > (deg(v), id(v)) (deg(u′), id(u′)) > (deg(v), id(v))

⇒ v in component of size at least deg(v) + 1.,
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A sketch of the spanning forest algorithm

Spanning Forest algorithm
1. Select O(n) edges (in a certain way).
2. Compute connected components on selected edges.
3. Partition the component graph into edge disjoint subgraphs,
constructed in a certain way.
4. Sparsify all subgraphs, in parallel.
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A sketch of the spanning forest algorithm

Partition and sparsification

Sparsification:
A sparsification algorithm that reduces the number of edges to

√
mn,

while preserving the edges of the minimum spanning forest.
Korhonen's algorithm [B.A. at DISC 2016] adjusted to sparse graphs.

Partition:
O(logn) edge disjoint subgraphs of the component graph

(V1, E1), (V2, E2), . . . (VO(log n), EO(log n))

s.t.
∑

i
√
|Vi| · |Ei| = O(n).
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My research
.
Minimum Cut problem



2-out contractions (Ghaffari, N., Thorup; SODA'20)

2-out contraction - algorithm for simple graphs

1. For each vertex mark 2 random incident edges.
2. Contract connected components spanned by marked edges.
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2-out contractions (Ghaffari, N., Thorup; SODA'20)

2-out contraction - properties (for simple graphs)

1. Number of vertices after contraction is O(n/δ).
2. A fixed non-singleton min-cut is preserved with a constant

probability.
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Algorithms based on 2-out

Missing pieces

1. Reduce the number of edges (to O(n)).
2. Modify alg. to preserve all small cuts with high probability.
3. Compute min-cut on smaller graph with different algorithm (for
multigraphs).

Improved Algorithms:
1. Congested Clique / MPC: O(1) round algorithm.

2. Sequential: min
(
O(m logn),O(m+ n log2 n)

)
.

impr. over Henzinger, Rao, Wang; SODA'17

3. Distributed (Congest): Õ(n0.8D0.2 + n0.9).
impr. over Daga, Henzinger, Nanongkai, Saranurak; STOC'19
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impr. over Daga, Henzinger, Nanongkai, Saranurak; STOC'19

14



Algorithms based on 2-out

Missing pieces
1. Reduce the number of edges (to O(n)).
2. Modify alg. to preserve all small cuts with high probability.
3. Compute min-cut on smaller graph with different algorithm (for
multigraphs).

Improved Algorithms:
1. Congested Clique / MPC: O(1) round algorithm.

2. Sequential: min
(
O(m logn),O(m+ n log2 n)

)
.

impr. over Henzinger, Rao, Wang; SODA'17

3. Distributed (Congest): Õ(n0.8D0.2 + n0.9).
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impr. over Daga, Henzinger, Nanongkai, Saranurak; STOC'19

14



Algorithms based on 2-out

Missing pieces
1. Reduce the number of edges (to O(n)).
2. Modify alg. to preserve all small cuts with high probability.
3. Compute min-cut on smaller graph with different algorithm (for
multigraphs).

Improved Algorithms:
1. Congested Clique / MPC: O(1) round algorithm.

2. Sequential: min
(
O(m logn),O(m+ n log2 n)

)
.

impr. over Henzinger, Rao, Wang; SODA'17

3. Distributed (Congest): Õ(n0.8D0.2 + n0.9).
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MPC algorithms for weighted graphs (Ghaffari, N.; PODC'20)

Linear local memory
Adaptation of algorithm based on tree packings (Karger, STOC'96).

Sublinear local memory
(2+ ε)-approximation in O(logn log logn) rounds, modification of
contraction based algorithm for PRAM (Karger, SODA'94).
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My research
.
Dynamic Graph algorithms



Motivation

In practice:

• solving problem repeatedly
• slightly changing data set

More formally

• G1,G2, . . . , Gi is Gi−1 with up to k modifications.
• Goal: compute S1, S2, . . . , a sequence of solutions.

Batch dynamic updates in MPC:

• Goal': for batch-update on graph Gi compute update on Si that
transforms it into Si+1

• Meta-goal: minimize round complexity of update and local
memory S, while maximizing batch size k.
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MPC: S ∈ Θ(n) vs S ∈ O(n1−ε)

There is no proven separation between linear memory MPC and
sublinear memory MPC. However, we know substantially better
algorithms for O(n) memory regime.

S ∈ O(n) S ∈ O(n1−ε)

MST O(1) O(logn)
2-EC O(1) O(logn)
MIS O(log logn) Õ(

√
logn)

MM O(log logn) Õ(
√

logn)

2-cycle Conjecture
Any algorithm that distinguish between single-cycle input and
two-cycle input, with O(n1−ε) local memory, and poly(n) global
memory requires Ω(logn) rounds.
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Example: Maximal Matching under batch updates

Input: Sequence of batch-updates, each adds / removes k edges.

Goal: Maintain a maximal matching; for each batch of updates to the
graph, compute a batch of updates to the matching.
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Dynamic Graph Algorithms with Batch Updates in the MPC
(N., Onak; SODA'21)

Our results (for k ∈ O(S))

Problem upd. compl. ini. compl.
Minimum Spanning Tree O(1) O(logn)
2-Edge Connected Components O(1) O(logn)
Maximal Matching O(log logn) Õ(

√
logn)

Our building blocks
1. Top tree implementation (for 1 and 2).
2. Additional observations (for 1 and 3).

MST: reduce the problem to static version, with O(k) vertices
MM: static version of the problem with vertex cover of size O(k)

Better-than-static algorithms for k ∈ Θ(S1+ε′)? Unlikely.
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√
logn)

Our building blocks
1. Top tree implementation (for 1 and 2).
2. Additional observations (for 1 and 3).

MST: reduce the problem to static version, with O(k) vertices
MM: static version of the problem with vertex cover of size O(k)

Better-than-static algorithms for k ∈ Θ(S1+ε′)? Unlikely.

21



Dynamic Graph Algorithms with Batch Updates in the MPC
(N., Onak; SODA'21)

Our results (for k ∈ O(S))

Problem upd. compl. ini. compl.
Minimum Spanning Tree O(1) O(logn)
2-Edge Connected Components O(1) O(logn)
Maximal Matching O(log logn) Õ(
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Thanks!

For the details:
- email me: knowicki@cs.uni.wroc.pl
- ask me in person
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