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Most of my work is on
fine-grained complexity…

…but so is Karol’s

Let’s talk about something different



motivation

Classical algorithms
• Worst-case guarantees
• Overly pessimistic on easy instances

Machine learning
• Powerful most of the time
• No guarantees, can go crazy



recall: adversarial examples

Source: arxiv.org/abs/1412.6572
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Best of both worlds: learning-augmented algorithms

Input + black-box predictions (e.g., coming from ML model)

• Consistency: close-to-optimal performance when predictions accurate
• Robustness: worst-case guarantees, even when predictions adversarial
• Smoothness: performance degrades slowly in the prediction error
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caching problem

Cache size: k = 3 Source: arxiv.org/abs/2006.16239

Offline: greedy is optimal, evict item with largest next arrival time (Belady, 1966)

Online: O(log k)-competitive︸ ︷︷ ︸
ALG6O(log(k)·OPT)

randomized Marker algorithm (Fiat et al., 1991)
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learning-augmented caching

Theorem: (Lykouris, Vassilvitskii, ICML 2018)

Suppose each access request comes with predicted next arrival time

Prediction error η =
∑

i |tpredicted(i)− treal(i)|

There is an O(min{
√
η/OPT, log k})-competitive algorithm

Follow-up improvements:

• O(min{log(η/OPT), log k}) (Rohatgi, SODA 2020)
• O(min{ log k

k · η/OPT, log k}) (Rohatgi, SODA 2020)
• O(min{ 1

k · η/OPT, log k}) (Wei, APPROX 2020)
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some other learning-augmented online algorithms

Caching (Lykouris, Vassilvitskii, ICML 2018)
Predict next arrival time

Ski rental (Purohit, Svitkina, Kumar, NeurIPS 2018)
Predict #days we will ski

Non-clairvoyant scheduling: (Purohit, Svitkina, Kumar, NeurIPS 2018)
Predict processing times

Restricted assignment (Lattanzi et al., SODA 2020)
Predict machine weights

Weighted caching (Jiang, Panigrahi, Sun, ICALP 2020)
Predict all requests until next arrival

Issue: setups tailored to specific problems



lower bound for weighted caching

Theorem: (Antoniadis, Coester, Eliáš, P., Simon, ICML 2020)
(Jiang, Panigrahi, Sun, ICALP 2020)

Even with perfect predictions of next arrival times,
no better-than-classical o(log k)-competitive algorithm for weighted caching



metrical task systems

Wide class of online problems
Includes, e.g., caching, weighted caching, k-server, convex body chasing

Theorem: (Antoniadis, Coester, Eliáš, P., Simon, ICML 2020)

Optimal classical competitive ratio: α (predictionless)

Suppose, at time t, given pt := prediction of optimal algorithm’s state ot

Prediction error η =
∑

t dist(pt, ot)

There is an O(min{η/OPT, α})-competitive algorithm

Further, for caching, an O(min{log(η/OPT), log k})-competitive algorithm
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concern

“Are your predictions plausible?” (anonymous reviewers)

Yes! (Chłędowski, P., Szabucki, Żołna, ICML 2021)
…and algorithms using them tend to perform better

We used Parrot (Liu et al., ICML 2020),
a neural network for caching problem,
with two heads:
• next arrival time
• item evicted by optimal algorithm
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minimum weight bipartite matching
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Hungarian algorithm: O(nm) time

What if we solve many similar instances? E.g.:
• instances sampled from a distribution,
• one instance slowly changing over time.
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recall: lp formulation of matching

Primal:

minimize
∑
e∈E

cexe

subject to
∑

e∈N(v)

xe = 1 ∀ v ∈ V

xe > 0 ∀ e ∈ E

Dual:

maximize
∑
v∈V

yv

subject to yu + yv 6 cu,v ∀ (u, v) ∈ E



learning-augmented matching

Theorem: (Dinitz et al., arXiv 2021)

Suppose input comes with predicted dual ŷ

There is an O(m
√
n ·min{||ŷ − y||1,

√
n})-time algorithm



open problems

Use predictions to speed-up other combinatorial optimization algorithms

• Minimum cost maximum flow
• Local search algorithms
• Put your favorite algorithm here

Thank you!
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