
learning-augmented algorithms

Adam Polak
Warsaw, November 4th, 2021



Most of my work is on
fine-grained complexity…

…but so is Karol’s

Let’s talk about something different



motivation

Classical algorithms
• Worst-case guarantees
• Overly pessimistic on easy instances

Machine learning
• Powerful most of the time
• No guarantees, can go crazy



recall: adversarial examples

Source: arxiv.org/abs/1412.6572



motivation

Classical algorithms
• Worst-case guarantees
• Overly pessimistic on easy instances

Machine learning
• Powerful most of the time
• No guarantees, can go crazy

Best of both worlds: learning-augmented algorithms

Input + black-box predictions (e.g., coming from ML model)

• Consistency: close-to-optimal performance when predictions accurate
• Robustness: worst-case guarantees, even when predictions adversarial
• Smoothness: performance degrades slowly in the prediction error



motivation

Classical algorithms
• Worst-case guarantees
• Overly pessimistic on easy instances

Machine learning
• Powerful most of the time
• No guarantees, can go crazy

Best of both worlds: learning-augmented algorithms

Input + black-box predictions (e.g., coming from ML model)

• Consistency: close-to-optimal performance when predictions accurate

• Robustness: worst-case guarantees, even when predictions adversarial
• Smoothness: performance degrades slowly in the prediction error



motivation

Classical algorithms
• Worst-case guarantees
• Overly pessimistic on easy instances

Machine learning
• Powerful most of the time
• No guarantees, can go crazy

Best of both worlds: learning-augmented algorithms

Input + black-box predictions (e.g., coming from ML model)

• Consistency: close-to-optimal performance when predictions accurate
• Robustness: worst-case guarantees, even when predictions adversarial

• Smoothness: performance degrades slowly in the prediction error



motivation

Classical algorithms
• Worst-case guarantees
• Overly pessimistic on easy instances

Machine learning
• Powerful most of the time
• No guarantees, can go crazy

Best of both worlds: learning-augmented algorithms

Input + black-box predictions (e.g., coming from ML model)

• Consistency: close-to-optimal performance when predictions accurate
• Robustness: worst-case guarantees, even when predictions adversarial
• Smoothness: performance degrades slowly in the prediction error



caching problem

Cache size: k = 3 Source: arxiv.org/abs/2006.16239

Offline: greedy is optimal, evict item with largest next arrival time (Belady, 1966)

Online: O(log k)-competitive︸ ︷︷ ︸
ALG6O(log(k)·OPT)

randomized Marker algorithm (Fiat et al., 1991)



caching problem

Cache size: k = 3 Source: arxiv.org/abs/2006.16239

Offline: greedy is optimal, evict item with largest next arrival time (Belady, 1966)

Online: O(log k)-competitive︸ ︷︷ ︸
ALG6O(log(k)·OPT)

randomized Marker algorithm (Fiat et al., 1991)



caching problem

Cache size: k = 3 Source: arxiv.org/abs/2006.16239

Offline: greedy is optimal, evict item with largest next arrival time (Belady, 1966)

Online: O(log k)-competitive︸ ︷︷ ︸
ALG6O(log(k)·OPT)

randomized Marker algorithm (Fiat et al., 1991)



learning-augmented caching

Theorem: (Lykouris, Vassilvitskii, ICML 2018)

Suppose each access request comes with predicted next arrival time

Prediction error η =
∑

i |tpredicted(i)− treal(i)|

There is an O(min{
√
η/OPT, log k})-competitive algorithm

Follow-up improvements:

• O(min{log(η/OPT), log k}) (Rohatgi, SODA 2020)
• O(min{ log k

k · η/OPT, log k}) (Rohatgi, SODA 2020)
• O(min{ 1

k · η/OPT, log k}) (Wei, APPROX 2020)



learning-augmented caching

Theorem: (Lykouris, Vassilvitskii, ICML 2018)

Suppose each access request comes with predicted next arrival time

Prediction error η =
∑

i |tpredicted(i)− treal(i)|

There is an O(min{
√
η/OPT, log k})-competitive algorithm

Follow-up improvements:

• O(min{log(η/OPT), log k}) (Rohatgi, SODA 2020)
• O(min{ log k

k · η/OPT, log k}) (Rohatgi, SODA 2020)
• O(min{ 1

k · η/OPT, log k}) (Wei, APPROX 2020)



some other learning-augmented online algorithms

Caching (Lykouris, Vassilvitskii, ICML 2018)
Predict next arrival time

Ski rental (Purohit, Svitkina, Kumar, NeurIPS 2018)
Predict #days we will ski

Non-clairvoyant scheduling: (Purohit, Svitkina, Kumar, NeurIPS 2018)
Predict processing times

Restricted assignment (Lattanzi et al., SODA 2020)
Predict machine weights

Weighted caching (Jiang, Panigrahi, Sun, ICALP 2020)
Predict all requests until next arrival

Issue: setups tailored to specific problems



lower bound for weighted caching

Theorem: (Antoniadis, Coester, Eliáš, P., Simon, ICML 2020)
(Jiang, Panigrahi, Sun, ICALP 2020)

Even with perfect predictions of next arrival times,
no better-than-classical o(log k)-competitive algorithm for weighted caching



metrical task systems

Wide class of online problems
Includes, e.g., caching, weighted caching, k-server, convex body chasing

Theorem: (Antoniadis, Coester, Eliáš, P., Simon, ICML 2020)

Optimal classical competitive ratio: α (predictionless)

Suppose, at time t, given pt := prediction of optimal algorithm’s state ot

Prediction error η =
∑

t dist(pt, ot)

There is an O(min{η/OPT, α})-competitive algorithm

Further, for caching, an O(min{log(η/OPT), log k})-competitive algorithm



metrical task systems

Wide class of online problems
Includes, e.g., caching, weighted caching, k-server, convex body chasing

Theorem: (Antoniadis, Coester, Eliáš, P., Simon, ICML 2020)

Optimal classical competitive ratio: α (predictionless)

Suppose, at time t, given pt := prediction of optimal algorithm’s state ot

Prediction error η =
∑

t dist(pt, ot)

There is an O(min{η/OPT, α})-competitive algorithm

Further, for caching, an O(min{log(η/OPT), log k})-competitive algorithm



concern

“Are your predictions plausible?” (anonymous reviewers)

Yes! (Chłędowski, P., Szabucki, Żołna, ICML 2021)
…and algorithms using them tend to perform better

We used Parrot (Liu et al., ICML 2020),
a neural network for caching problem,
with two heads:
• next arrival time
• item evicted by optimal algorithm



concern

“Are your predictions plausible?” (anonymous reviewers)

Yes! (Chłędowski, P., Szabucki, Żołna, ICML 2021)

…and algorithms using them tend to perform better

We used Parrot (Liu et al., ICML 2020),
a neural network for caching problem,
with two heads:
• next arrival time
• item evicted by optimal algorithm



concern

“Are your predictions plausible?” (anonymous reviewers)

Yes! (Chłędowski, P., Szabucki, Żołna, ICML 2021)
…and algorithms using them tend to perform better

We used Parrot (Liu et al., ICML 2020),
a neural network for caching problem,
with two heads:
• next arrival time
• item evicted by optimal algorithm



minimum weight bipartite matching

1
4

4
1
2
1
1
3
1
4
4
5

Hungarian algorithm: O(nm) time

What if we solve many similar instances? E.g.:
• instances sampled from a distribution,
• one instance slowly changing over time.



minimum weight bipartite matching

1
4

4
1
2
1
1
3
1
4
4
5

Hungarian algorithm: O(nm) time

What if we solve many similar instances? E.g.:
• instances sampled from a distribution,
• one instance slowly changing over time.



recall: lp formulation of matching

Primal:

minimize
∑
e∈E

cexe

subject to
∑

e∈N(v)

xe = 1 ∀ v ∈ V

xe > 0 ∀ e ∈ E

Dual:

maximize
∑
v∈V

yv

subject to yu + yv 6 cu,v ∀ (u, v) ∈ E



learning-augmented matching

Theorem: (Dinitz et al., arXiv 2021)

Suppose input comes with predicted dual ŷ

There is an O(m
√
n ·min{||ŷ − y||1,

√
n})-time algorithm



open problems

Use predictions to speed-up other combinatorial optimization algorithms

• Minimum cost maximum flow
• Local search algorithms
• Put your favorite algorithm here

Thank you!



open problems

Use predictions to speed-up other combinatorial optimization algorithms

• Minimum cost maximum flow
• Local search algorithms
• Put your favorite algorithm here

Thank you!


