
The Art of Incremental Improvements

Karol Węgrzycki



Context

Theoretical Computer
 Science

Algorithms

Dynamic Programming

Approxim
atio

n

Com
puta

tio
nal

 C
om

plex
ity

Fine-Grained
Complexity

My Interests

Goal: For important problem give:
I fast algorithm,
I argument that it cannot solved faster.

Thank you: Antonios Antoniadis, Karl Bringmann,
Jana Cslovjecsek, Marek Cygan, François Dross,
Krzysztof Fleszar, Sándor Kisfaludi-Bak, Jędrzej
Olkowski, Marcin Mucha, Jesper Nederlof, Marvin
Künnemann, Andrzej Pacut, Jakub Pawlewicz, Michał
Pilipczuk, Adam Polak, Lars Rohwedder, Mateusz
Rychlewicz, Piotr Sankowski, Céline Swennenhuis,
Adam Witkowski, Michał Włodarczyk, Anna
Zych-Pawlewicz



Context

Theoretical Computer
 Science

Algorithms

Dynamic Programming

Approxim
atio

n

Com
puta

tio
nal

 C
om

plex
ity

Fine-Grained
Complexity

My Interests

Goal: For important problem give:
I fast algorithm,
I argument that it cannot solved faster.

Thank you: Antonios Antoniadis, Karl Bringmann,
Jana Cslovjecsek, Marek Cygan, François Dross,
Krzysztof Fleszar, Sándor Kisfaludi-Bak, Jędrzej
Olkowski, Marcin Mucha, Jesper Nederlof, Marvin
Künnemann, Andrzej Pacut, Jakub Pawlewicz, Michał
Pilipczuk, Adam Polak, Lars Rohwedder, Mateusz
Rychlewicz, Piotr Sankowski, Céline Swennenhuis,
Adam Witkowski, Michał Włodarczyk, Anna
Zych-Pawlewicz



Context

Theoretical Computer
 Science

Algorithms

Dynamic Programming

Approxim
atio

n

Com
puta

tio
nal

 C
om

plex
ity

Fine-Grained
Complexity

My Interests

Goal: For important problem give:
I fast algorithm,
I argument that it cannot solved faster.

Thank you: Antonios Antoniadis, Karl Bringmann,
Jana Cslovjecsek, Marek Cygan, François Dross,
Krzysztof Fleszar, Sándor Kisfaludi-Bak, Jędrzej
Olkowski, Marcin Mucha, Jesper Nederlof, Marvin
Künnemann, Andrzej Pacut, Jakub Pawlewicz, Michał
Pilipczuk, Adam Polak, Lars Rohwedder, Mateusz
Rychlewicz, Piotr Sankowski, Céline Swennenhuis,
Adam Witkowski, Michał Włodarczyk, Anna
Zych-Pawlewicz



Context

Theoretical Computer
 Science

Algorithms

Dynamic Programming

Approxim
atio

n

Com
puta

tio
nal

 C
om

plex
ity

Fine-Grained
Complexity

My Interests

Goal: For important problem give:
I fast algorithm,
I argument that it cannot solved faster.

Thank you: Antonios Antoniadis, Karl Bringmann,
Jana Cslovjecsek, Marek Cygan, François Dross,
Krzysztof Fleszar, Sándor Kisfaludi-Bak, Jędrzej
Olkowski, Marcin Mucha, Jesper Nederlof, Marvin
Künnemann, Andrzej Pacut, Jakub Pawlewicz, Michał
Pilipczuk, Adam Polak, Lars Rohwedder, Mateusz
Rychlewicz, Piotr Sankowski, Céline Swennenhuis,
Adam Witkowski, Michał Włodarczyk, Anna
Zych-Pawlewicz



Context

Theoretical Computer
 Science

Algorithms

Dynamic Programming

Approxim
atio

n

Com
puta

tio
nal

 C
om

plex
ity

Fine-Grained
Complexity

My Interests

Goal: For important problem give:
I fast algorithm,
I argument that it cannot solved faster.

Thank you: Antonios Antoniadis, Karl Bringmann,
Jana Cslovjecsek, Marek Cygan, François Dross,
Krzysztof Fleszar, Sándor Kisfaludi-Bak, Jędrzej
Olkowski, Marcin Mucha, Jesper Nederlof, Marvin
Künnemann, Andrzej Pacut, Jakub Pawlewicz, Michał
Pilipczuk, Adam Polak, Lars Rohwedder, Mateusz
Rychlewicz, Piotr Sankowski, Céline Swennenhuis,
Adam Witkowski, Michał Włodarczyk, Anna
Zych-Pawlewicz



Context

Theoretical Computer
 Science

Algorithms

Dynamic Programming

Approxim
atio

n

Com
puta

tio
nal

 C
om

plex
ity

Fine-Grained
Complexity

My Interests

Goal: For important problem give:
I fast algorithm,
I argument that it cannot solved faster.

Thank you: Antonios Antoniadis, Karl Bringmann,
Jana Cslovjecsek, Marek Cygan, François Dross,
Krzysztof Fleszar, Sándor Kisfaludi-Bak, Jędrzej
Olkowski, Marcin Mucha, Jesper Nederlof, Marvin
Künnemann, Andrzej Pacut, Jakub Pawlewicz, Michał
Pilipczuk, Adam Polak, Lars Rohwedder, Mateusz
Rychlewicz, Piotr Sankowski, Céline Swennenhuis,
Adam Witkowski, Michał Włodarczyk, Anna
Zych-Pawlewicz



Context

Theoretical Computer
 Science

Algorithms

Dynamic Programming

Approxim
atio

n

Com
puta

tio
nal

 C
om

plex
ity

Fine-Grained
Complexity

My Interests

Goal: For important problem give:
I fast algorithm,
I argument that it cannot solved faster.

Thank you: Antonios Antoniadis, Karl Bringmann,
Jana Cslovjecsek, Marek Cygan, François Dross,
Krzysztof Fleszar, Sándor Kisfaludi-Bak, Jędrzej
Olkowski, Marcin Mucha, Jesper Nederlof, Marvin
Künnemann, Andrzej Pacut, Jakub Pawlewicz, Michał
Pilipczuk, Adam Polak, Lars Rohwedder, Mateusz
Rychlewicz, Piotr Sankowski, Céline Swennenhuis,
Adam Witkowski, Michał Włodarczyk, Anna
Zych-Pawlewicz



Context

Theoretical Computer
 Science

Algorithms

Dynamic Programming

Approxim
atio

n

Com
puta

tio
nal

 C
om

plex
ity

Fine-Grained
Complexity

My Interests

Goal: For important problem give:
I fast algorithm,
I argument that it cannot solved faster.

Thank you: Antonios Antoniadis, Karl Bringmann,
Jana Cslovjecsek, Marek Cygan, François Dross,
Krzysztof Fleszar, Sándor Kisfaludi-Bak, Jędrzej
Olkowski, Marcin Mucha, Jesper Nederlof, Marvin
Künnemann, Andrzej Pacut, Jakub Pawlewicz, Michał
Pilipczuk, Adam Polak, Lars Rohwedder, Mateusz
Rychlewicz, Piotr Sankowski, Céline Swennenhuis,
Adam Witkowski, Michał Włodarczyk, Anna
Zych-Pawlewicz



Context

Theoretical Computer
 Science

Algorithms

Dynamic Programming

Approxim
atio

n

Com
puta

tio
nal

 C
om

plex
ity

Fine-Grained
Complexity

My Interests

Goal: For important problem give:
I fast algorithm,
I argument that it cannot solved faster.

Thank you: Antonios Antoniadis, Karl Bringmann,
Jana Cslovjecsek, Marek Cygan, François Dross,
Krzysztof Fleszar, Sándor Kisfaludi-Bak, Jędrzej
Olkowski, Marcin Mucha, Jesper Nederlof, Marvin
Künnemann, Andrzej Pacut, Jakub Pawlewicz, Michał
Pilipczuk, Adam Polak, Lars Rohwedder, Mateusz
Rychlewicz, Piotr Sankowski, Céline Swennenhuis,
Adam Witkowski, Michał Włodarczyk, Anna
Zych-Pawlewicz



Context

Theoretical Computer
 Science

Algorithms

Dynamic Programming

Approxim
atio

n

Com
puta

tio
nal

 C
om

plex
ity

Fine-Grained
Complexity

My Interests

Goal: For important problem give:
I fast algorithm,
I argument that it cannot solved faster.

Thank you: Antonios Antoniadis, Karl Bringmann,
Jana Cslovjecsek, Marek Cygan, François Dross,
Krzysztof Fleszar, Sándor Kisfaludi-Bak, Jędrzej
Olkowski, Marcin Mucha, Jesper Nederlof, Marvin
Künnemann, Andrzej Pacut, Jakub Pawlewicz, Michał
Pilipczuk, Adam Polak, Lars Rohwedder, Mateusz
Rychlewicz, Piotr Sankowski, Céline Swennenhuis,
Adam Witkowski, Michał Włodarczyk, Anna
Zych-Pawlewicz



Most of my talks look like this:



Most of my talks look like this:



Most of my talks look like this:



Most of my talks look like this:



Most of my talks look like this:



Most of my talks look like this:



Most of my talks look like this:



Most of my talks look like this:



Most of my talks look like this:



Most of my talks look like this:



Most of my talks look like this:



Most of my talks look like this:



Most of my talks look like this:



Most of my talks look like this:



Plan for the talk



Part 1: Problem Definition



Part 1: Problem Definition

Euclidean Traveling Salesman Problem (Euclidean TSP): Given n points in R2,
find the shortest roundtrip tour that contains all the points.

Source: Robert Bosch

Euclidean TSP is NP-hard [Papadimitriou 1977]. We need to settle for approximation



Part 1: Problem Definition

Euclidean Traveling Salesman Problem (Euclidean TSP): Given n points in R2,
find the shortest roundtrip tour that contains all the points.

Source: Robert Bosch

Euclidean TSP is NP-hard [Papadimitriou 1977]. We need to settle for approximation



Part 1: Problem Definition

Euclidean Traveling Salesman Problem (Euclidean TSP): Given n points in R2,
find the shortest roundtrip tour that contains all the points.

Source: Robert Bosch

Euclidean TSP is NP-hard [Papadimitriou 1977]. We need to settle for approximation



Part 1: Problem Definition

Euclidean Traveling Salesman Problem (Euclidean TSP): Given n points in R2,
find the shortest roundtrip tour that contains all the points.

Source: Robert Bosch

Euclidean TSP is NP-hard [Papadimitriou 1977]. We need to settle for approximation



Part 1: Problem Definition

Euclidean Traveling Salesman Problem (Euclidean TSP): Given n points in R2,
find the shortest roundtrip tour that contains all the points.

Source: Robert Bosch

Euclidean TSP is NP-hard [Papadimitriou 1977]. We need to settle for approximation



Part 2: State-of-the-art



Part 2: State-of-the-art

PTAS for Euclidean TSP: for any fixed ε > 0 find a tour that is at most (1 + ε)
times longer than optimal in nO(1) time.

History of PTASes for Euclidean TSP:

Arora (J.ACM 1998) n(log(n)/ε)O(1/ε) time

Mitchell (SICOMP 1999) nO(1/ε) time
2010 Gödel prize
winners!

Rao and Smith (STOC 1998)
(1/ε)O(1/ε)n log n time

Bartal and Gottlieb (FOCS 2013) 2(1/ε)O(1)
n

time

Complicated

Our result: Simple 2O(1/ε)n log n time algorithm (joint work with Sándor
Kisfaludi-Bak and Jesper Nederlof)



Part 2: State-of-the-art

PTAS for Euclidean TSP: for any fixed ε > 0 find a tour that is at most (1 + ε)
times longer than optimal in nO(1) time.

History of PTASes for Euclidean TSP:

Arora (J.ACM 1998) n(log(n)/ε)O(1/ε) time

Mitchell (SICOMP 1999) nO(1/ε) time
2010 Gödel prize
winners!

Rao and Smith (STOC 1998)
(1/ε)O(1/ε)n log n time

Bartal and Gottlieb (FOCS 2013) 2(1/ε)O(1)
n

time

Complicated

Our result: Simple 2O(1/ε)n log n time algorithm (joint work with Sándor
Kisfaludi-Bak and Jesper Nederlof)



Part 2: State-of-the-art

PTAS for Euclidean TSP: for any fixed ε > 0 find a tour that is at most (1 + ε)
times longer than optimal in nO(1) time.

History of PTASes for Euclidean TSP:

Arora (J.ACM 1998) n(log(n)/ε)O(1/ε) time

Mitchell (SICOMP 1999) nO(1/ε) time
2010 Gödel prize
winners!

Rao and Smith (STOC 1998)
(1/ε)O(1/ε)n log n time

Bartal and Gottlieb (FOCS 2013) 2(1/ε)O(1)
n

time

Complicated

Our result: Simple 2O(1/ε)n log n time algorithm (joint work with Sándor
Kisfaludi-Bak and Jesper Nederlof)



Part 2: State-of-the-art

PTAS for Euclidean TSP: for any fixed ε > 0 find a tour that is at most (1 + ε)
times longer than optimal in nO(1) time.

History of PTASes for Euclidean TSP:

Arora (J.ACM 1998) n(log(n)/ε)O(1/ε) time

Mitchell (SICOMP 1999) nO(1/ε) time
2010 Gödel prize
winners!

Rao and Smith (STOC 1998)
(1/ε)O(1/ε)n log n time

Bartal and Gottlieb (FOCS 2013) 2(1/ε)O(1)
n

time

Complicated

Our result: Simple 2O(1/ε)n log n time algorithm (joint work with Sándor
Kisfaludi-Bak and Jesper Nederlof)



Part 2: State-of-the-art
Arora’s algorithm

Algorithm:
1. Add randomly shifted quadtree

2. Add g equispaced portals for each cell
3. Find min. length portal respecting tour with DP

Structure Theorem There is a portal respecting tour of
expected tour length ≤ (1 + ε)OPT

Dynamic Programming For each cell find shortest path
cover for a given matching on portals

Total runtime: nO(1) · 2O(g) = nO(1/ε)



Part 2: State-of-the-art
Arora’s algorithm

Algorithm:
1. Add randomly shifted quadtree

2. Add g equispaced portals for each cell
3. Find min. length portal respecting tour with DP

Structure Theorem There is a portal respecting tour of
expected tour length ≤ (1 + ε)OPT

Dynamic Programming For each cell find shortest path
cover for a given matching on portals

Total runtime: nO(1) · 2O(g) = nO(1/ε)



Part 2: State-of-the-art
Arora’s algorithm

Algorithm:
1. Add randomly shifted quadtree

2. Add g equispaced portals for each cell
3. Find min. length portal respecting tour with DP

Structure Theorem There is a portal respecting tour of
expected tour length ≤ (1 + ε)OPT

Dynamic Programming For each cell find shortest path
cover for a given matching on portals

Total runtime: nO(1) · 2O(g) = nO(1/ε)



Part 2: State-of-the-art
Arora’s algorithm

Algorithm:
1. Add randomly shifted quadtree

2. Add g equispaced portals for each cell
3. Find min. length portal respecting tour with DP

Structure Theorem There is a portal respecting tour of
expected tour length ≤ (1 + ε)OPT

Dynamic Programming For each cell find shortest path
cover for a given matching on portals

Total runtime: nO(1) · 2O(g) = nO(1/ε)



Part 2: State-of-the-art
Arora’s algorithm

Algorithm:
1. Add randomly shifted quadtree
2. Add g equispaced portals for each cell

3. Find min. length portal respecting tour with DP

Structure Theorem There is a portal respecting tour of
expected tour length ≤ (1 + ε)OPT

Dynamic Programming For each cell find shortest path
cover for a given matching on portals

Total runtime: nO(1) · 2O(g) = nO(1/ε)



Part 2: State-of-the-art
Arora’s algorithm

Algorithm:
1. Add randomly shifted quadtree
2. Add g equispaced portals for each cell

3. Find min. length portal respecting tour with DP

Structure Theorem There is a portal respecting tour of
expected tour length ≤ (1 + ε)OPT

Dynamic Programming For each cell find shortest path
cover for a given matching on portals

Total runtime: nO(1) · 2O(g) = nO(1/ε)



Part 2: State-of-the-art
Arora’s algorithm

Algorithm:
1. Add randomly shifted quadtree
2. Add g equispaced portals for each cell

3. Find min. length portal respecting tour with DP

Structure Theorem There is a portal respecting tour of
expected tour length ≤ (1 + ε)OPT

Dynamic Programming For each cell find shortest path
cover for a given matching on portals

Total runtime: nO(1) · 2O(g) = nO(1/ε)



Part 2: State-of-the-art
Arora’s algorithm

Algorithm:
1. Add randomly shifted quadtree
2. Add g equispaced portals for each cell

3. Find min. length portal respecting tour with DP

Structure Theorem There is a portal respecting tour of
expected tour length ≤ (1 + ε)OPT

Dynamic Programming For each cell find shortest path
cover for a given matching on portals

Total runtime: nO(1) · 2O(g) = nO(1/ε)



Part 2: State-of-the-art
Arora’s algorithm

Algorithm:
1. Add randomly shifted quadtree
2. Add g equispaced portals for each cell

3. Find min. length portal respecting tour with DP

Structure Theorem There is a portal respecting tour of
expected tour length ≤ (1 + ε)OPT

Dynamic Programming For each cell find shortest path
cover for a given matching on portals

Total runtime: nO(1) · 2O(g) = nO(1/ε)



Part 2: State-of-the-art
Arora’s algorithm

Algorithm:
1. Add randomly shifted quadtree
2. Add g equispaced portals for each cell
3. Find min. length portal respecting tour with DP

Structure Theorem There is a portal respecting tour of
expected tour length ≤ (1 + ε)OPT

Dynamic Programming For each cell find shortest path
cover for a given matching on portals

Total runtime: nO(1) · 2O(g) = nO(1/ε)



Part 2: State-of-the-art
Arora’s algorithm

Algorithm:
1. Add randomly shifted quadtree
2. Add g equispaced portals for each cell
3. Find min. length portal respecting tour with DP

Structure Theorem There is a portal respecting tour of
expected tour length ≤ (1 + ε)OPT

Dynamic Programming For each cell find shortest path
cover for a given matching on portals

Total runtime: nO(1) · 2O(g) = nO(1/ε)



Part 2: State-of-the-art
Arora’s algorithm

Algorithm:
1. Add randomly shifted quadtree
2. Add g equispaced portals for each cell
3. Find min. length portal respecting tour with DP

Structure Theorem There is a portal respecting tour of
expected tour length ≤ (1 + ε)OPT

Dynamic Programming For each cell find shortest path
cover for a given matching on portals

Total runtime: nO(1) · 2O(g) = nO(1/ε)



Part 2: State-of-the-art
Arora’s algorithm

Algorithm:
1. Add randomly shifted quadtree
2. Add g equispaced portals for each cell
3. Find min. length portal respecting tour with DP

Structure Theorem There is a portal respecting tour of
expected tour length ≤ (1 + ε)OPT

Dynamic Programming For each cell find shortest path
cover for a given matching on portals

Total runtime: nO(1) · 2O(g) = nO(1/ε)



Part 2: State-of-the-art
Arora’s algorithm

Algorithm:
1. Add randomly shifted quadtree
2. Add g equispaced portals for each cell
3. Find min. length portal respecting tour with DP

Structure Theorem There is a portal respecting tour of
expected tour length ≤ (1 + ε)OPT

Dynamic Programming For each cell find shortest path
cover for a given matching on portals

Total runtime: nO(1) · 2O(g) = nO(1/ε)



Part 2: State-of-the-art
Arora’s algorithm

Algorithm:
1. Add randomly shifted quadtree
2. Add g equispaced portals for each cell
3. Find min. length portal respecting tour with DP

Structure Theorem There is a portal respecting tour of
expected tour length ≤ (1 + ε)OPT

Dynamic Programming For each cell find shortest path
cover for a given matching on portals

Total runtime: nO(1) · 2O(g) = nO(1/ε)



Part 3: Our Improvement



Part 3: Our Improvement

Main point: If tour uses < 1/ε portals, then increase the
granularity g

Our idea For every cell pick k ≤ 1/ε portals from the set of
g := 1

ε2k
equally spaced portals

In the Dynamic Programming consider states where k
portals from g(k) equally spaced portals are used (for every
k ∈ {2, . . . , ε−1}).

Runtime:
(g(k)

k

)
n logn ≤ 2O(1/ε)n logn

Proof that this scheme works: Highly technical, check our
paper



Part 3: Our Improvement

Main point: If tour uses < 1/ε portals, then increase the
granularity g

Our idea For every cell pick k ≤ 1/ε portals from the set of
g := 1

ε2k
equally spaced portals

In the Dynamic Programming consider states where k
portals from g(k) equally spaced portals are used (for every
k ∈ {2, . . . , ε−1}).

Runtime:
(g(k)

k

)
n logn ≤ 2O(1/ε)n logn

Proof that this scheme works: Highly technical, check our
paper



Part 3: Our Improvement

Main point: If tour uses < 1/ε portals, then increase the
granularity g

Our idea For every cell pick k ≤ 1/ε portals from the set of
g := 1

ε2k
equally spaced portals

In the Dynamic Programming consider states where k
portals from g(k) equally spaced portals are used (for every
k ∈ {2, . . . , ε−1}).

Runtime:
(g(k)

k

)
n logn ≤ 2O(1/ε)n logn

Proof that this scheme works: Highly technical, check our
paper



Part 3: Our Improvement

Main point: If tour uses < 1/ε portals, then increase the
granularity g

Our idea For every cell pick k ≤ 1/ε portals from the set of
g := 1

ε2k
equally spaced portals

In the Dynamic Programming consider states where k
portals from g(k) equally spaced portals are used (for every
k ∈ {2, . . . , ε−1}).

Runtime:
(g(k)

k

)
n logn ≤ 2O(1/ε)n logn

Proof that this scheme works: Highly technical, check our
paper



Part 3: Our Improvement

Main point: If tour uses < 1/ε portals, then increase the
granularity g

Our idea For every cell pick k ≤ 1/ε portals from the set of
g := 1

ε2k
equally spaced portals

In the Dynamic Programming consider states where k
portals from g(k) equally spaced portals are used (for every
k ∈ {2, . . . , ε−1}).

Runtime:
(g(k)

k

)
n logn ≤ 2O(1/ε)n logn

Proof that this scheme works: Highly technical, check our
paper



Part 3: Our Improvement

Main point: If tour uses < 1/ε portals, then increase the
granularity g

Our idea For every cell pick k ≤ 1/ε portals from the set of
g := 1

ε2k
equally spaced portals

In the Dynamic Programming consider states where k
portals from g(k) equally spaced portals are used (for every
k ∈ {2, . . . , ε−1}).

Runtime:
(g(k)

k

)
n logn ≤ 2O(1/ε)n logn

Proof that this scheme works: Highly technical, check our
paper



Part 3: Our Improvement

Main point: If tour uses < 1/ε portals, then increase the
granularity g

Our idea For every cell pick k ≤ 1/ε portals from the set of
g := 1

ε2k
equally spaced portals

In the Dynamic Programming consider states where k
portals from g(k) equally spaced portals are used (for every
k ∈ {2, . . . , ε−1}).

Runtime:
(g(k)

k

)
n logn ≤ 2O(1/ε)n logn

Proof that this scheme works: Highly technical, check our
paper



Part 3: Our Improvement

Main point: If tour uses < 1/ε portals, then increase the
granularity g

Our idea For every cell pick k ≤ 1/ε portals from the set of
g := 1

ε2k
equally spaced portals

In the Dynamic Programming consider states where k
portals from g(k) equally spaced portals are used (for every
k ∈ {2, . . . , ε−1}).

Runtime:
(g(k)

k

)
n logn ≤ 2O(1/ε)n logn

Proof that this scheme works: Highly technical, check our
paper



Part 4: Is it incremental improvement?



Part 4: Is it incremental?

Maybe it is? Maybe it is not?

(1/ε)O(1/ε)n log n −→ 2O(1/ε)n log n

Theorem: No 2o(1/ε) · n100 time algorithm (assuming a widely believed hypothesis).

The point: This is the final improvement!



Part 4: Is it incremental?

Maybe it is? Maybe it is not?

(1/ε)O(1/ε)n log n −→ 2O(1/ε)n log n

Theorem: No 2o(1/ε) · n100 time algorithm (assuming a widely believed hypothesis).

The point: This is the final improvement!



Part 4: Is it incremental?

Maybe it is? Maybe it is not?

(1/ε)O(1/ε)n log n −→ 2O(1/ε)n log n

Theorem: No 2o(1/ε) · n100 time algorithm (assuming a widely believed hypothesis).

The point: This is the final improvement!



Part 4: Is it incremental?

Maybe it is? Maybe it is not?

(1/ε)O(1/ε)n log n −→ 2O(1/ε)n log n

Theorem: No 2o(1/ε) · n100 time algorithm (assuming a widely believed hypothesis).

The point: This is the final improvement!



Part 4: Is it incremental?

Maybe it is? Maybe it is not?

(1/ε)O(1/ε)n log n −→ 2O(1/ε)n log n

Theorem: No 2o(1/ε) · n100 time algorithm (assuming a widely believed hypothesis).

The point: This is the final improvement!



Conclusion

Theoretical Computer
 Science

Algorithms

Dynamic Programming

Approxim
atio

n

Com
puta

tio
nal

 C
om

plex
ity

Fine-Grained
Complexity

My Interests

We saw a type of problem that I find interesting

My usual goal: settle the runtime complexity of
fundamental problems

Message:

It is hard to tell which results are “incremental” and
which are not.

To make progress it is equally important to find
lower bounds.

Thank You!



Conclusion

Theoretical Computer
 Science

Algorithms

Dynamic Programming

Approxim
atio

n

Com
puta

tio
nal

 C
om

plex
ity

Fine-Grained
Complexity

My Interests

We saw a type of problem that I find interesting

My usual goal: settle the runtime complexity of
fundamental problems

Message:

It is hard to tell which results are “incremental” and
which are not.

To make progress it is equally important to find
lower bounds.

Thank You!



Conclusion

Theoretical Computer
 Science

Algorithms

Dynamic Programming

Approxim
atio

n

Com
puta

tio
nal

 C
om

plex
ity

Fine-Grained
Complexity

My Interests

We saw a type of problem that I find interesting

My usual goal: settle the runtime complexity of
fundamental problems

Message:

It is hard to tell which results are “incremental” and
which are not.

To make progress it is equally important to find
lower bounds.

Thank You!



Conclusion

Theoretical Computer
 Science

Algorithms

Dynamic Programming

Approxim
atio

n

Com
puta

tio
nal

 C
om

plex
ity

Fine-Grained
Complexity

My Interests

We saw a type of problem that I find interesting

My usual goal: settle the runtime complexity of
fundamental problems

Message:

It is hard to tell which results are “incremental” and
which are not.

To make progress it is equally important to find
lower bounds.

Thank You!



Conclusion

Theoretical Computer
 Science

Algorithms

Dynamic Programming

Approxim
atio

n

Com
puta

tio
nal

 C
om

plex
ity

Fine-Grained
Complexity

My Interests

We saw a type of problem that I find interesting

My usual goal: settle the runtime complexity of
fundamental problems

Message:

It is hard to tell which results are “incremental” and
which are not.

To make progress it is equally important to find
lower bounds.

Thank You!


